

## Block-Structured Adaptive Mesh Refinement

#### John Bell

jbbell@lbl.gov

Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory, USA

http://seesar.lbl.gov/ccse/

Presented at: Adaptive Grid Approaches for Fluid Dynamics

Cambridge University

Cambridge, UK

December 14-15, 2004

Collaborators: A. Almgren, V. Beckner, M. Day, J. Grcar, M. Lijewski, C. Rendleman

M. Berger, P. Colella



#### AMR approaches

Unstructured



- Unstructured
- Mesh distortion



- Unstructured
- Mesh distortion



- Unstructured
- Mesh distortion





- Unstructured
- Mesh distortion
- Point-wise structured refinement



- Unstructured
- Mesh distortion
- Point-wise structured refinement





- Unstructured
- Mesh distortion
- Point-wise structured refinement





- Unstructured
- Mesh distortion
- Point-wise structured refinement
- Block structured





- Unstructured
- Mesh distortion
- Point-wise structured refinement
- Block structured





- Unstructured
- Mesh distortion
- Point-wise structured refinement
- Block structured





#### AMR approaches

- Unstructured
- Mesh distortion
- Point-wise structured refinement
- Block structured



The next four lectures focus on block-structured refinement for time-dependent problems

- Basic ideas
- Multi-physics applications
- Implementation issues

#### **Overview of Lectures**



#### Day 1:

- 1) AMR for Hyperbolic Conservation Laws ("Hello World")
  - Preliminaries
  - Key AMR ideas
  - Software / Parallel Implementation
- 2) Extension to More General Systems
  - Incompressible Navier-Stokes
    - Fractional Step Scheme
  - 1-D AMR for "classical" PDE's
    - hyperbolic
    - elliptic
    - parabolic
  - Spatial accuracy considerations

### Overview of Lectures (p.2)



#### Day 2:

- 3) IAMR and Extension to Multiphysics
  - Incompressible AMR
  - Software to support IAMR
  - Multiphysics applications
    - LMC (Low Mach Number Combustion)
    - AMAR (Adaptive Mesh and Algorithm Refinement)
- 4) Geometry
  - Embedded Boundary
  - Software to support EB

#### **AMR for Conservation Laws**



Consider the 2-D hyperbolic conservation law

$$U_t + \mathbf{F}_x + \mathbf{G}_y = 0$$

where

$$\mathbf{F} = \mathbf{F}(U), \mathbf{G} = \mathbf{G}(U)$$

Basic discretization:

- Finite volume approach with cell-centered data
- Flux-based representation of conservation law
- Explicit in time update

$$\frac{U^{n+1} - U^n}{\Delta t} = \frac{\mathbf{F}_{i-1/2,j}^{n+\frac{1}{2}} - \mathbf{F}_{i+1/2,j}^{n+\frac{1}{2}}}{\Delta x} + \frac{\mathbf{G}_{i,j-1/2}^{n+\frac{1}{2}} - \mathbf{G}_{i,j+1/2}^{n+\frac{1}{2}}}{\Delta y}$$

Numerical fluxes computed from data at  $t^n$  in neighborhood of edge

#### **Basic AMR Issues**



#### Basic design concepts for AMR

- Cover regions requiring high resolution with finer grids
- Use higher-order upwind methodology for regular grids to integrate PDE
- Refine in space and time
  - Maintain CFL across levels
  - Subcycle in time

#### **Shock Reflection**



#### Issues

- Generation of grid hierarchy
- How to integrate on hierarchy
  - Integration of data on a patch
  - Synchronization of levels

#### Original references:

- 2-D: Berger and Colella, JCP 1989
- 3-D: Bell,Berger,Saltzman and Welcome, JCP 1994



- Fill data at level 0
- Estimate where refinement is needed and buffer
- Group cells into patches according to a prescribed "grid efficiency" and refine  $\Rightarrow B_1, ..., B_n$  (Berger and Rigoustos, 1991)
- Repeat for next level and adjust for proper nesting



- Fill data at level 0
- Estimate where refinement is needed and buffer
- Group cells into patches according to a prescribed "grid efficiency" and refine  $\Rightarrow B_1, ..., B_n$  (Berger and Rigoustos, 1991)
- Repeat for next level and adjust for proper nesting





- Fill data at level 0
- Estimate where refinement is needed and buffer
- Group cells into patches according to a prescribed "grid efficiency" and refine  $\Rightarrow B_1, ..., B_n$  (Berger and Rigoustos, 1991)
- Repeat for next level and adjust for proper nesting





- Fill data at level 0
- Estimate where refinement is needed and buffer
- Group cells into patches according to a prescribed "grid efficiency" and refine  $\Rightarrow B_1, ..., B_n$  (Berger and Rigoustos, 1991)
- Repeat for next level and adjust for proper nesting





- Fill data at level 0
- Estimate where refinement is needed and buffer
- Group cells into patches according to a prescribed "grid efficiency" and refine  $\Rightarrow B_1, ..., B_n$  (Berger and Rigoustos, 1991)
- Repeat for next level and adjust for proper nesting





- Fill data at level 0
- Estimate where refinement is needed and buffer
- Group cells into patches according to a prescribed "grid efficiency" and refine  $\Rightarrow B_1, ..., B_n$  (Berger and Rigoustos, 1991)
- Repeat for next level and adjust for proper nesting







Efficiency = 0.7



Efficiency = 0.9



Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- Advance fine grids in time r times
- Synchronize coarse and fine data



Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data









Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data









Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data







Consider two levels, coarse and fine, with refinement ratio r

$$\Delta x_f = \Delta x_c/r$$
 ,  $\Delta t_f = \Delta t_c/r$ ,

#### To integrate

- Advance coarse grids in time  $t_c \rightarrow t_c + \Delta t_c$
- $\blacksquare$  Advance fine grids in time r times
- Synchronize coarse and fine data





### **Integrating on grid patch**



How do you integrate a patch of data at level  $\ell$ ?

Obtain boundary data needed to call integrator on uniform grid of data.

- ullet Assume explicit scheme with stencil width  $s_d$ 
  - lacktriangle Enlarge patch by  $s_d$  cells in each direction and fill with data using
    - Physical boundary conditions
    - Other patches at the same level
    - Coarse grid data



■ Advance grid in time  $t \rightarrow t + \Delta t$ 

### FillPatch Operation



To fill fine grid "ghost cells" at  $t+k\Delta t_f$ , k=0,...,r-1, using coarse grid data

Define coarse patch needed for interpolation









- Time-interpolate data on coarse patch to time  $t+k\Delta t_f$
- Interpolate coarse data to fine patch



## **Synchronization**



After coarse grid time step and the subcycled advance of fine data, we have

- $lacksquare U^c$  at  $t_c^{n+1}$
- $U^f$  at  $t_c^{n+1}$

However,  $U^c$  and  $U^f$  are not consistent

- Coarse data is not necessarily equal to the average of the fine grid data "over" it.
- Scheme violates conservation because of inconsistent fluxes at coarse-fine interface



After coarse grid time step and the subcycled advance of fine data, we have

- lacksquare  $U^c$  at  $t_c^{n+1}$
- $U^f$  at  $t_c^{n+1}$

- Coarse data is not necessarily equal to the average of the fine grid data "over" it.
- Scheme violates conservation because of inconsistent fluxes at coarse-fine interface





After coarse grid time step and the subcycled advance of fine data, we have

- lacksquare  $U^c$  at  $t_c^{n+1}$
- $U^f$  at  $t_c^{n+1}$

- Coarse data is not necessarily equal to the average of the fine grid data "over" it.
- Scheme violates conservation because of inconsistent fluxes at coarse-fine interface







After coarse grid time step and the subcycled advance of fine data, we have

- lacksquare  $U^c$  at  $t_c^{n+1}$
- $U^f$  at  $t_c^{n+1}$

- Coarse data is not necessarily equal to the average of the fine grid data "over" it.
- Scheme violates conservation because of inconsistent fluxes at coarse-fine interface







After coarse grid time step and the subcycled advance of fine data, we have

- lacksquare  $U^c$  at  $t_c^{n+1}$
- $U^f$  at  $t_c^{n+1}$

- Coarse data is not necessarily equal to the average of the fine grid data "over" it.
- Scheme violates conservation because of inconsistent fluxes at coarse-fine interface







After coarse grid time step and the subcycled advance of fine data, we have

- lacksquare  $U^c$  at  $t_c^{n+1}$
- $U^f$  at  $t_c^{n+1}$

- Coarse data is not necessarily equal to the average of the fine grid data "over" it.
- Scheme violates conservation because of inconsistent fluxes at coarse-fine interface





# Synchronization (p2)



How do we address these problems with the solution?

Average down the fine grid data onto all underlying coarse cells

$$U^c = \frac{1}{r^d} \sum U^f$$

Reflux at coarse-fine interfaces

$$\Delta x_c \Delta y_c U^c = \Delta x_c \Delta y_c U^c - \Delta t^c A^c \mathbf{F}^c + \sum \Delta t^f A^f \mathbf{F}^f$$







Compute "error" at each cell: if "too big" then flag cell for refinement

- Richardson extrapolation
  - Coarsen data on a patch at  $t^{n-1}$  and advance by  $2\Delta t$
  - Advance data at  $t^n$  by  $\Delta t$  and coarsen
  - Difference of these two solutions is proportional to error
- Functions of solution (e.g., vorticity)
- Geometric considerations

Compute refined patches as initially



Compute "error" at each cell: if "too big" then flag cell for refinement

- Richardson extrapolation
  - Coarsen data on a patch at  $t^{n-1}$  and advance by  $2\Delta t$
  - Advance data at  $t^n$  by  $\Delta t$  and coarsen
  - Difference of these two solutions is proportional to error
- Functions of solution (e.g., vorticity)
- Geometric considerations

Compute refined patches as initially





Compute "error" at each cell: if "too big" then flag cell for refinement

- Richardson extrapolation
  - Coarsen data on a patch at  $t^{n-1}$  and advance by  $2\Delta t$
  - Advance data at  $t^n$  by  $\Delta t$  and coarsen
  - Difference of these two solutions is proportional to error
- Functions of solution (e.g., vorticity)
- Geometric considerations

Compute refined patches as initially





Compute "error" at each cell: if "too big" then flag cell for refinement

- Richardson extrapolation
  - Coarsen data on a patch at  $t^{n-1}$  and advance by  $2\Delta t$
  - Advance data at  $t^n$  by  $\Delta t$  and coarsen
  - Difference of these two solutions is proportional to error
- Functions of solution (e.g., vorticity)
- Geometric considerations

Compute refined patches as initially





Compute "error" at each cell: if "too big" then flag cell for refinement

- Richardson extrapolation
  - Coarsen data on a patch at  $t^{n-1}$  and advance by  $2\Delta t$
  - Advance data at  $t^n$  by  $\Delta t$  and coarsen
  - Difference of these two solutions is proportional to error
- Functions of solution (e.g., vorticity)
- Geometric considerations

Compute refined patches as initially



## **Summary of Algorithm**



#### **Hyperbolic AMR**

```
For n = 1, ..., N_{final}
        Advance(0,t_0^n)
Advance (\ell,t)
   If (time to regrid) then
        Regrid(\ell)
    FillPatch(ℓ,t)
   Integrate(\ell, t, \Delta t_{\ell})
   If (\ell < \ell_{finest}) then
        For i_{sub} = 1, ..., r_{\ell}
            Advance(\ell+1, t+(i_{sub}-1)\Delta t_{\ell+1})
        Average down(\ell, t + \Delta t_{\ell})
        Reflux(\ell, t + \Delta t_{\ell})
    End If
Regrid(\ell): generate new grids at levels \ell+1 and higher
FillPatch(\ell,t): fill patch of data at level \ell and time t
Integrate (\ell, t, \Delta t): Advance data at level \ell from t to t + \Delta t, averaging and storing fluxes at
              boundaries of level \ell grids if \ell > 0 and level \ell cells at boundary of \ell + 1
Average down(\ell,t): average (in space) level \ell+1 data at time t to level \ell
Reflux(\ell,t): Add (time- and space-averaged) refluxing corrections to
              level \ell cells at time t adjacent to level \ell+1 grids
```

#### **Review of Data Operations**



#### Single-level operations

- Fill a patch with data from same-level grids
- Fill data using physical boundary conditions
- Interpolate data in time
- Add corrections from stored fluxes at same resolution
- Integrate patch of data in time
- Find union of rectangles that contain a set of tagged points

#### Multi-level operations

- Map regions between different levels of refinement
- Interpolate : coarse → fine
- Average : fine → coarse
- Store fluxes from fine grid boundaries at coarse resolution

## **Software / Parallel Implementation**



#### Available software frameworks for hyperbolic AMR

- BoxLib (LBNL)
- Chombo (LBNL)
- AMRClaw (UW)

- SAMRAI (LLNL)
- PARAMESH (NASA)
- GRACE (Rutgers)

#### **Data Structures**

- Support for Index space operations
- Real data stored in FORTRAN-compatible form

#### Parallelization Strategy

- Data distribution
- Dynamic load balancing

#### **Data Structures**



#### Index space

- Box : a rectangular region in index space
- BoxArray : a union of Boxes at a level

#### Real data at a level

- FAB: FORTRAN-compatible data on a single box
  - Data on a patch
- MultiFAB: FORTRAN-compatible data on a union of rectangles
  - Data at a level
- FluxRegister: FORTRAN-compatible data on the border of a union of rectangles
  - Data for reflux correction (at coarse level resolution)

### **Data Operations**



#### Box calculus in C++:

- compute intersection of patch with union of boxes
- compute coarsening or refinement of patch coordinates
- identify coarse grids underlying a given patch

Real data operations happen in FORTRAN on individual rectangular regions, either grids in the BoxArray or temporary patches:

- time integration of a patch of data
- interpolation/averaging of a patch of data
- filling of flux registers

#### **Parallel Data Distribution**



AMR hierarchy represented by a BoxArray and MultiFAB at each level

- Each processor contains the full BoxArray.
  - Simplifies data-communications: send-and-forget
- Data itself is distributed among processors; different resolutions are distributed independently, separately load-balanced.
- Owner computes rule on FAB data.
- Efficient implementation
  - Every MultiFAB with the same BoxArray has the same distribution
  - Each processor keeps list of its grids nearest neighbors and their processors
  - Each processor keeps list of coarse grids and their processors used to supply boundary conditions
  - Messages are ganged: no more than one message is ever exchanged between processors in an operation

#### **Load Balance**



AMR requires dynamic load-balancing.

- Point-wise uniform work load: work proportional to the grid volume.
- Dynamic programming approach based on the classic *Knapsack* problem.
- The LB problem as posed is NP, but a heuristic algorithm is provided that finds a good, if not optimal solution.
- Experience shows that good load-balance can be achieved with about three grids per processor.

## **Scaling Results for Hyperbolic Code**



#### Hyperbolic AMR Scaling



AMR using unsplit Godunov, 3 levels, factor of 4 refinement

#### **Shock-bubble interaction**



Mach 1.25 shock in air interacting with a helium bubble

- Domain  $22.25 \ cm \times 8.9 \ cm \times 8.9 \ cm$
- Base grid  $80 \times 32 \times 32$
- 3 levels,  $r_1 = 1$ ,  $r_2 = 4$



Shock bubble